Sunowgreen(Learn With Us)

learn with us!

Titan: Moon Of Saturn, Structure, Atmosphere, Lakes, Discovery, Exploration

Titan is the largest moon of Saturn. It is the only moon known to have a dense atmosphere, and the only object in space other than Earth where clear evidence of stable bodies of surface liquid has been found. Titan is the sixth ellipsoidal moon from Saturn. Frequently described...

What is Asteroid?,Discovery,Asteroid belt,Trojans

Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids. These terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics...

Read about earth formation, structure

Earth is our home planet. Scientists believe Earth and its moon formed around the same time as the rest of the solar system. They think that was about 4.5 billion years ago. Earth is the fifth-largest planet in the solar system. Its diameter is about 8,000 miles. And Earth is the third-closest...

Anderomeda: nearest galaxy from the milky way

a spiral galaxy approximately 780 kiloparsecs (2.5 million light-years) from Earth, and the nearest major galaxy to the Milky Way. Its name stems from the area of the sky in which it appears, the constellation of Andromeda. The 2006 observations by the Spitzer Space Telescope revealed...

Nov 3, 2017

Triton: Moon of neptune

TRITON

Triton moon mosaic Voyager 2 (large).jpg
Triton is the largest natural satellite of the planet Neptune, and the first Neptunian moon to be discovered. It was discovered on October 10, 1846, by English astronomer William Lassell. It is the only large moon in the Solar System with a retrograde orbit, an orbit in the opposite direction to its planet's rotation. At 2,710 kilometres (1,680 mi) in diameter, it is the seventh-largest moon in the Solar System. Because of its retrograde orbit and composition similar to Pluto's, Triton is thought to have been a dwarf planet captured from the Kuiper belt. Triton has a surface of mostly frozen nitrogen, a mostly water-ice crust, an icy mantle and a substantial core of rock and metal. The core makes up two-thirds of its total mass. Triton has a mean density of 2.061 g/cm3 and is composed of approximately 15–35% water ice.


Triton is one of the few moons in the Solar System known to be geologically active (the others being Jupiter's Io and Saturn's Enceladus). As a consequence, its surface is relatively young with few obvious impact craters, and a complex geological history revealed in intricate cryovolcanic and tectonic terrains. Part of its surface has geysers erupting sublimated nitrogen gas, contributing to a tenuous nitrogen atmosphere less than 1/70,000 the pressure of Earth's atmosphere at sea level.
Triton was discovered by British astronomer William Lassell on October 10, 1846, just 17 days after the discovery of Neptune.
A brewer by trade, Lassell began making mirrors for his amateur telescope in 1820. When John Herschel received news of Neptune's discovery, he wrote to Lassell suggesting he search for possible moons. Lassell did so and discovered Triton eight days later. Lassell also claimed to have discovered rings. Although Neptune was later confirmed to have rings, they are so faint and dark that it is doubtful that he actually saw them.

Triton is named after the Greek sea god Triton (Τρίτων), the son of Poseidon (the Greek god comparable to the Roman Neptune). The name was first proposed by Camille Flammarion in his 1880 book Astronomie Populaire, and was officially adopted many decades later. Until the discovery of the second moon Nereid in 1949, Triton was commonly referred to as "the satellite of Neptune". Lassell did not name his own discovery; he later successfully suggested the name Hyperion, previously chosen by John Herschel, for the eighth moon of Saturn when he discovered it.

Orbit and rotation

The orbit of Triton (red) is opposite in direction and tilted −23° compared to a typical moon's orbit (green) in the plane of Neptune's equator.


Triton is unique among all large moons in the Solar System for its retrograde orbit around its planet (i.e. it orbits in a direction opposite to the planet's rotation). Most of the outer irregular moons of Jupiter and Saturn also have retrograde orbits, as do some of Uranus's outer moons. However, these moons are all much more distant from their primaries, and are small in comparison; the largest of them (Phoebe) has only 8% of the diameter (and 0.03% of the mass) of Triton.

Triton's orbit is associated with two tilts, the inclination of Neptune's spin to Neptune's orbit, 30°, and the inclination of Triton's orbit to Neptune's spin, 157° (an inclination over 90° indicates retrograde motion). Triton's orbit precesses forward relative to Neptune's spin with a period of about 678 Earth years (4.1 Neptunian years), making its Neptune-orbit-relative inclination vary between 127° and 180° and in the past, to 173°. That inclination is currently 130°; Triton's orbit is now near its maximum departure from coplanarity with Neptune's.

Triton's rotation is tidally locked to be synchronous with its orbit around Neptune: it keeps one face oriented toward the planet at all times. Its equator is almost exactly aligned with its orbital plane. At the present time, Triton's rotational axis is about 40° from Neptune's orbital plane, and hence at some point during Neptune's year each pole points fairly close to the Sun, almost like the poles of Uranus. As Neptune orbits the Sun, Triton's polar regions take turns facing the Sun, resulting in seasonal changes as one pole, then the other, moves into the sunlight. Such changes were observed in 2010.

Triton's revolution around Neptune has become a nearly perfect circle with an eccentricity of almost zero. Viscoelastic damping from tides alone is not thought to be capable of circularizing Triton's orbit in the time since the origin of the system, and gas drag from a prograde debris disc is likely to have played a substantial role. Tidal interactions also cause Triton's orbit, which is already closer to Neptune than the Moon's is to Earth, to gradually decay further; predictions are that 3.6 billion years from now, Triton will pass within Neptune's Roche limit. This will result in either a collision with Neptune's atmosphere or the breakup of Triton, forming a ring system similar to that found around Saturn.

Capture

The Kuiper belt (green), in the Solar System's outskirts, is where Triton is thought to have originated.

Moons in retrograde orbits cannot form in the same region of the solar nebula as the planets they orbit, so Triton must have been captured from elsewhere. It might therefore have originated in the Kuiper belt, a ring of small icy objects extending outwards from just inside the orbit of Neptune to about 50 AU from the Sun. Thought to be the point of origin for the majority of short-period comets observed from Earth, the belt is also home to several large, planet-like bodies including Pluto, which is now recognized as the largest in a population of Kuiper belt objects (the plutinos) locked in orbital step with Neptune. Triton is only slightly larger than Pluto and nearly identical in composition, which has led to the hypothesis that the two share a common origin.

The proposed capture of Triton may explain several features of the Neptunian system, including the extremely eccentric orbit of Neptune's moon Nereid and the scarcity of moons as compared to the other giant planets. Triton's initially eccentric orbit would have intersected orbits of irregular moons and disrupted those of smaller regular moons, dispersing them through gravitational interactions.

Triton's eccentric post-capture orbit would have also resulted in tidal heating of its interior, which could have kept Triton fluid for a billion years; this inference is supported by evidence of differentiation in Triton's interior. This source of internal heat disappeared following tidal locking and circularization of the orbit.

Two types of mechanisms have been proposed for Triton's capture. To be gravitationally captured by a planet, a passing body must lose sufficient energy to be slowed down to a speed less than that required to escape. An early theory of how Triton may have been slowed was by collision with another object, either one that happened to be passing by Neptune (which is unlikely), or a moon or proto-moon in orbit around Neptune (which is more likely). A more recent hypothesis suggests that, before its capture, Triton was part of a binary system. When this binary encountered Neptune, it interacted in such a way that the binary dissociated, with one portion of the binary expelled, and the other, Triton, becoming bound to Neptune. This event is more likely for more massive companions. Similar mechanisms have been proposed for the capture of Mars's moons. This hypothesis is supported by several lines of evidence, including binaries being very common among the large Kuiper belt objects. The event was brief but gentle, saving Triton from collisional disruption. Events like this may have been common during the formation of Neptune, or later when it migrated outward.

Physical characteristics

Triton dominates the Neptunian moon system, with over 99.5% of its total mass. This imbalance may reflect the elimination of many of Neptune's original satellites following Triton's capture.
 
Triton is the seventh-largest moon and sixteenth-largest object in the Solar System, and is modestly larger than the dwarf planets Pluto and Eris. It comprises more than 99.5% of all the mass known to orbit Neptune, including the planet's rings and thirteen other known moons, and is also more massive than all known moons in the Solar System smaller than itself combined. Also, with a diameter 5.5% that of Neptune, it is the largest moon of a gas giant relative to its planet in terms of diameter, although Titan is bigger relative to Saturn in terms of mass. It has a radius, density (2.061 g/cm3), temperature and chemical composition similar to those of Pluto.

Triton's surface is covered with a transparent layer of annealed frozen nitrogen. Only 40% of Triton's surface has been observed and studied, but it is possible that it is entirely covered in such a thin sheet of nitrogen ice. Like Pluto's, Triton's crust consists of 55% nitrogen ice with other ices mixed in. Water ice comprises 15–35% and frozen carbon dioxide (dry ice) the remaining 10–20%. Trace ices include 0.1% methane and 0.05% carbon monoxide. There could also be ammonia ice on the surface, as there are indications of ammonia dihydrate in the lithosphere. Triton's mean density implies that it probably consists of about 30–45% water ice (including relatively small amounts of volatile ices), with the remainder being rocky material. Triton's surface area is 23 million km2, which is 4.5% of Earth, or 15.5% of Earth's land area. Triton has a considerably and unusually high albedo, reflecting 60–95% of the sunlight that reaches it, and it has changed slightly since the first observations. By comparison, the Moon reflects only 11%. Triton's reddish colour is thought to be the result of methane ice, which is converted to tholins under bombardment from ultraviolet radiation.

Because Triton's surface indicates a long history of melting, models of its interior posit that Triton is differentiated, like Earth, into a solid core, a mantle and a crust. Water, the most abundant volatile in the Solar System, comprises Triton's mantle, enveloping a core of rock and metal. There is enough rock in Triton's interior for radioactive decay to power convection in the mantle to this day. The heat may even be sufficient to maintain a global subsurface ocean similar to what is hypothesized to exist beneath the surface of Europa. If liquid water is present in Triton, it has been speculated that this could make it habitable for some form of life.

Atmosphere

Triton has a tenuous nitrogen atmosphere, with trace amounts of carbon monoxide and small amounts of methane near its surface. Like Pluto's atmosphere, the atmosphere of Triton is thought to have resulted from evaporation of nitrogen from its surface. Its surface temperature is at least 35.6 K (−237.6 °C) because Triton's nitrogen ice is in the warmer, hexagonal crystalline state, and the phase transition between hexagonal and cubic nitrogen ice occurs at that temperature. An upper limit in the low 40s (K) can be set from vapor pressure equilibrium with nitrogen gas in Triton's atmosphere. This is colder than Pluto's average equilibrium temperature of 44 K (−229 °C). Triton's surface atmospheric pressure is only about 1.4–1.9 Pa (0.014–0.019 mbar).

Turbulence at Triton's surface creates a troposphere (a "weather region") rising to an altitude of 8 km. Streaks on Triton's surface left by geyser plumes suggest that the troposphere is driven by seasonal winds capable of moving material of over a micrometre in size. Unlike other atmospheres, Triton's lacks a stratosphere, and instead has a thermosphere from altitudes of 8 to 950 km, and an exosphere above that. The temperature of Triton's upper atmosphere, at 95±5 K, is higher than that at its surface, due to heat absorbed from solar radiation and Neptune's magnetosphere. A haze permeates most of Triton's troposphere, thought to be composed largely of hydrocarbons and nitriles created by the action of sunlight on methane. Triton's atmosphere also has clouds of condensed nitrogen that lie between 1 and 3 km from its surface.

In 1997, observations from Earth were made of Triton's limb as it passed in front of stars. These observations indicated the presence of a denser atmosphere than was deduced from Voyager 2 data. Other observations have shown an increase in temperature by 5% from 1989 to 1998. These observations indicate Triton is approaching an unusually warm summer season that happens only once every few hundred years. Theories for this warming include a change of frost patterns on Triton's surface and a change in ice albedo, which would allow more heat to be absorbed. Another theory argues the changes in temperature are a result of deposition of dark, red material from geological processes. Because Triton's Bond albedo is among the highest within the Solar System, it is sensitive to small variations in spectral albedo.

Surface features

All detailed knowledge of the surface of Triton was acquired from a distance of 40,000 km by the Voyager 2 spacecraft during a single encounter in 1989. The 40% of Triton's surface imaged by Voyager 2 revealed blocky outcrops, ridges, troughs, furrows, hollows, plateaus, icy plains and few craters. Triton is relatively flat; its observed topography never varies beyond a kilometer. There are relatively few impact craters on Triton. Recent analysis of crater density and distribution has suggested that in geological terms, Triton's surface is extremely young, with regions varying from an estimated 50 million years old to just an estimated 6 million years old. 55% of Triton's surface is covered with frozen nitrogen, with water ice comprising 15–35% and dry ice (aka. frozen carbon dioxide) forming the remaining 10–20%. The surface shows deposits of tholins, organic compounds that may be precursor chemicals to the origin of life.

Cryovolcanism 

Triton is geologically active; its surface is young and has relatively few impact craters. Although Triton's crust is made of various ices, its subsurface processes are similar to those that produce volcanoes and rift valleys on Earth, but with water and ammonia as opposed to liquid rock. Triton's entire surface is cut by complex valleys and ridges, probably the result of tectonics and icy volcanism. The vast majority of surface features on Triton are endogenic—the result of internal geological processes rather than external processes such as impacts. Most are volcanic and extrusive in nature, rather than tectonic.

The Voyager 2 probe observed in 1989 a handful of geyser-like eruptions of invisible nitrogen gas and entrained dust from beneath the surface of Triton in plumes up to 8 km high. Triton is thus, along with Earth, Io, and Enceladus, one of the few bodies in the Solar System on which active eruptions of some sort have been observed. The best-observed examples are named Hili and Mahilani (after a Zulu water sprite and a Tongan sea spirit, respectively).

All the geysers observed were located between 50° and 57°S, the part of Triton's surface close to the subsolar point. This indicates that solar heating, although very weak at Triton's great distance from the Sun, plays a crucial role. It is thought that the surface of Triton probably consists of a translucent layer of frozen nitrogen overlying a darker substrate, which creates a kind of "solid greenhouse effect". Solar radiation passes through the thin surface ice sheet, slowly heating and vaporizing subsurface nitrogen until enough gas pressure accumulates for it to erupt through the crust. A temperature increase of just 4 K above the ambient surface temperature of 37 K could drive eruptions to the heights observed. Although commonly termed "cryovolcanic", this nitrogen plume activity is distinct from Triton's larger scale cryovolcanic eruptions, as well as volcanic processes on other worlds, which are powered by the internal heat of the body in question. Analogous CO2 geysers on Mars are thought to erupt from its south polar cap each spring.

Each eruption of a Triton geyser may last up to a year, driven by the sublimation of about 100 million cubic metres (3.5×109 cu ft) of nitrogen ice over this interval; dust entrained may be deposited up to 150 km downwind in visible streaks, and perhaps much farther in more diffuse deposits. Voyager 2's images of Triton's southern hemisphere show many such streaks of dark material. Between 1977 and the Voyager 2 flyby in 1989, Triton shifted from a reddish colour, similar to Pluto, to a far paler hue, suggesting that lighter nitrogen frosts had covered older reddish material. The eruption of volatiles from Triton's equator and their deposition at the poles may redistribute enough mass over the course of 10,000 years to cause polar wander. 


Polar cap, plains and ridges


 
Triton's south polar region is covered by a highly reflective cap of frozen nitrogen and methane sprinkled by impact craters and openings of geysers. Little is known about the north pole because it was on the night side during the Voyager 2 encounter, but it is thought that Triton must also have a north polar ice cap.


The high plains found on Triton's eastern hemisphere, such as Cipango Planum, cover over and blot out older features, and are therefore almost certainly the result of icy lava washing over the previous landscape. The plains are dotted with pits, such as Leviathan Patera, which are probably the vents from which this lava emerged. The composition of the lava is unknown, although a mixture of ammonia and water is suspected.

Four roughly circular "walled plains" have been identified on Triton. They are the flattest regions so far discovered, with a variance in altitude of less than 200 m. They are thought to have formed from eruption of icy lava. The plains near Triton's eastern limb are dotted with black spots, the maculae. Some maculae are simple dark spots with diffuse boundaries, and others comprise a dark central patch surrounded by a white halo with sharp boundaries. The maculae typically have diameters of about 100 km and widths of the halos of between 20 and 30 km.

There are extensive ridges and valleys in complex patterns across Triton's surface, probably the result of freeze–thaw cycles. Many also appear to be tectonic in nature and may result from extension or strike-slip faulting. There are long double ridges of ice with central troughs bearing a strong resemblance to Europan lineae (although they have a larger scale), and which may have a similar origin, possibly shear heating from strike-slip motion along faults caused by diurnal tidal stresses experienced before Triton's orbit was fully circularized. These faults with parallel ridges expelled from the interior cross complex terrain with valleys in the equatorial region. The ridges and furrows, or sulci, such as Yasu Sulci, Ho Sulci, and Lo Sulci, are thought to be of intermediate age in Triton's geological history, and in many cases to have formed concurrently. They tend to be clustered in groups or "packets".

Cantaloupe terrain 

Triton's western hemisphere consists of a strange series of fissures and depressions known as "cantaloupe terrain" because of its resemblance to the skin of a cantaloupe melon. Although it has few craters, it is thought that this is the oldest terrain on Triton. It probably covers much of Triton's western half.

Cantaloupe terrain, which is mostly dirty water ice, is only known to exist on Triton. It contains depressions 30–40 km in diameter. The depressions (cavi) are probably not impact craters because they are all of similar size and have smooth curves. The leading hypothesis for their formation is diapirism, the rising of "lumps" of less dense material through a stratum of denser material. Alternative hypotheses include formation by collapses, or by flooding caused by cryovolcanism.

Impact craters 

Due to constant erasure and modification by ongoing geological activity, impact craters on Triton's surface are relatively rare. A census of Triton's craters imaged by Voyager 2 found only 179 that were incontestably of impact origin, compared with 835 observed for Uranus's moon Miranda, which has only three percent of Triton's surface area. The largest crater observed on Triton thought to have been created by an impact is a 27 km-diameter feature called Mazomba. Although larger craters have been observed, they are generally thought to be volcanic in nature.

The few impact craters on Triton are almost all concentrated in the leading hemisphere—that facing the direction of the orbital motion—with the majority concentrated around the equator between 30° and 70° longitude, resulting from material swept up from orbit around Neptune. Because it orbits with one side permanently facing the planet, astronomers expect that Triton should have fewer impacts on its trailing hemisphere, due to impacts on the leading hemisphere being more frequent and more violent. Voyager 2 imaged only 40% of Triton's surface, so this remains uncertain.

Observation and exploration


The orbital properties of Triton were already determined with high accuacy in the 19th century. It was found to have a retrograde orbit, at a very high angle of inclination to the plane of Neptune's orbit. The first detailed observations of Triton were not made until 1930. Little was known about the satellite until Voyager 2 arrived in 1989.

Before the arrival of Voyager 2, astronomers suspected that Triton might have liquid nitrogen seas and a nitrogen/methane atmosphere with a density as much as 30% that of Earth. Like the famous overestimates of the atmospheric density of Mars, this proved completely false. As with Mars, a denser atmosphere is postulated for its early history.

The first attempt to measure the diameter of Triton was made by Gerard Kuiper in 1954. He obtained a value of 3,800 km. Subsequent measurement attempts arrived at values ranging from 2,500 to 6,000 km, or from slightly smaller than the Moon (3474.2 km) to nearly half the diameter of Earth. Data from the approach of Voyager 2 to Neptune on August 25, 1989, led to a more accurate estimate of Triton's diameter (2,706 km).

In the 1990s, various observations from Earth were made of the limb of Triton using the occultation of nearby stars, which indicated the presence of an atmosphere and an exotic surface. Observations in late 1997 suggests that Triton is heating up and the atmosphere has become significantly denser than when Voyager 2 flew past in 1989.

New concepts for missions to the Neptune system to be conducted in the 2010s have been brought forward by NASA scientists on numerous occasions over the last decades. All of them identified Triton as being a prime target and a separate Triton lander comparable to the Huygens probe for Titan was frequently included in those plans. No efforts aimed at Neptune and Triton went beyond the proposal phase and NASA's funding on missions to the outer Solar System is currently focused on the Jupiter and Saturn systems.

A proposed lander mission to Triton, called Triton Hopper, would mine and process nitrogen ice from the surface of Triton and process it to be used as small rocket propellant and fly or 'hop' across the surface.


Aug 8, 2017

Titan: Moon Of Saturn, Structure, Atmosphere, Lakes, Discovery, Exploration


Titan



(Titan: Moon Of Saturn, Structure, Atmosphere, Lakes, Discovery, Exploration)

Titan is the largest moon of Saturn. It is the only moon known to have a dense atmosphere,



and the only object in space other than Earth where clear evidence of stable bodies of surface liquid has been found.
Titan is the sixth ellipsoidal moon from Saturn. Frequently described as a planet-like moon, Titan is 50% larger than Earth's Moon, and it is 80% more massive. It is the second-largest moon in the Solar System, after Jupiter's moon Ganymede, and is larger than the smallest planet, Mercury, but only 40% as massive. Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn, and the sixth known planetary satellite (after Earth's Moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii. From Titan's surface, Saturn subtends an arc of 5.09 degrees and would appear 11.4 times larger in the sky than the Moon from Earth.
Titan is primarily composed of water ice and rocky material. Much as with Venus before the Space Age, the dense opaque atmosphere prevented understanding of Titan's surface until new information from the Cassini–Huygens mission in 2004, including the discovery of liquid hydrocarbon lakes in Titan's polar regions. The geologically young surface is generally smooth, with few impact craters, although mountains and several possible cryovolcanoes have been found.
The atmosphere of Titan is largely nitrogen; minor components lead to the formation of methane and ethane clouds and nitrogen-rich organic smog. The climate—including wind and rain—creates surface features similar to those of Earth, such as dunes, rivers, lakes, seas (probably of liquid methane and ethane), and deltas, and is dominated by seasonal weather patterns as on Earth. With its liquids (both surface and subsurface) and robust nitrogen atmosphere, Titan's methane cycle is analogous to Earth's water cycle, at the much lower temperature of about 94 K (−179.2 °C).
    
History  
Titan was discovered on March 25, 1655 by the Dutch astronomer Christiaan Huygens. Huygens was inspired by Galileo's discovery of Jupiter's four largest moons in 1610 and his improvements in telescope technology. Christiaan, with the help of his brother Constantijn Huygens, Jr., began building telescopes around 1650 and discovered the first observed moon orbiting Saturn with one of the telescopes they built. It was the sixth moon to be discovered, after Earth's Moon and the Galilean moons of Jupiter.
He named it Saturni Luna (or Luna Saturni, Latin for "Saturn's moon"), publishing in the 1655 tract De Saturni Luna Observatio Nova (A New Observation of Saturn's Moon). After Giovanni Domenico Cassini published his discoveries of four more moons of Saturn between 1673 and 1686, astronomers fell into the habit of referring to these and Titan as Saturn I through V (with Titan then in fourth position). Other early epithets for Titan include "Saturn's ordinary satellite". Titan is officially numbered Saturn VI because after the 1789 discoveries the numbering scheme was frozen to avoid causing any more confusion (Titan having borne the numbers II and IV as well as VI). Numerous small moons have been discovered closer to Saturn since then.
The name Titan, and the names of all seven satellites of Saturn then known, came from John Herschel (son of William Herschel, discoverer of Mimas and Enceladus) in his 1847 publication Results of Astronomical Observations Made during the Years 1834, 5, 6, 7, 8, at the Cape of Good Hope. He suggested the names of the mythological Titans(Ancient Greek: Τῑτάν), brothers and sisters of Cronus, the Greek Saturn. In Greek mythology, the Titans were a race of powerful deities, descendants of Gaia and Uranus, that ruled during the legendary Golden Age

Formation  
The moons of Jupiter and Saturn are thought to have formed through co-accretion, a similar process to that believed to have formed the planets in the Solar System. As the young gas giants , they were surrounded by discs of material that gradually coalesced into moons. Whereas Jupiter possesses four large satellites in highly regular, planet-like orbits, Titan overwhelmingly dominates Saturn's system and possesses a high orbital eccentricity not immediately explained by co-accretion alone. A proposed model for the formation of Titan is that Saturn's system began with a group of moons similar to Jupiter's Galilean satellites, but that they were disrupted by a series of giant impacts, which would go on to form Titan. Saturn's mid-sized moons, such as Iapetus and Rhea, were formed from the debris of these collisions. Such a violent beginning would also explain Titan's orbital eccentricity.
In 2014, analysis of Titan's atmospheric nitrogen suggested that it has possibly been sourced from material similar to that found in the Oort cloud and not from sources present during co-accretion of materials around Saturn.
   
Atmosphere 
Titan is the only known moon with a significant atmosphere, and its atmosphere is the only nitrogen-rich dense atmosphere in the Solar System aside from Earth's. Observations of it made in 2004 by Cassini suggest that Titan is a "super rotator", like Venus, with an atmosphere that rotates much faster than its surface. Observations from the Voyager space probes have shown that Titan's atmosphere is denser than Earth's, with a surface pressure about 1.45 atm. It is also about 1.19 times as massive as Earth's overall, or about 7.3 times more massive on a per surface area basis. Opaque haze layers block most visible light from the Sun and other sources and obscures Titan's surface features. Titan's lower gravity means that its atmosphere is far more extended than Earth's. The atmosphere of Titan is opaque at many wavelengths and as a result, a complete reflectance spectrum of the surface is impossible to acquire from orbit. It was not until the arrival of the Cassini–Huygens spacecraft in 2004 that the first direct images of Titan's surface were obtained 
    Titan's atmospheric composition in the stratosphere is 98.4% nitrogen with the remaining 1.6% composed mostly of methane (1.4%) and hydrogen (0.1–0.2%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene and propane, and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium. The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultravioletlight, producing a thick orange smog. Titan spends 95% of its time within Saturn's magnetosphere, which may help shield it from the solar wind.
Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years—a short time compared to the age of the Solar System. This suggests that methane must be replenished by a reservoir on or within Titan itself. The ultimate origin of the methane in its atmosphere may be its interior, released via eruptions from cryovolcanoes.
  1. On April 3, 2013, NASA reported that complex organic chemicals could arise on Titan, based on studies simulating the atmosphere of Titan.
  2. On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan.
  3. On September 30, 2013, propene was detected in the atmosphere of Titan by NASA's Cassinispacecraft, using its composite infrared spectrometer (CIRS). This is the first time propene has been found on any moon or planet other than Earth and is the first chemical found by the CIRS. The detection of propene fills a mysterious gap in observations that date back to NASA's Voyager 1spacecraft's first close flyby of Titan in 1980, during which it was discovered that many of the gases that make up Titan's brown haze were hydrocarbons, theoretically formed via the recombination of radicals created by the Sun's ultraviolet photolysis of methane.
  4. On October 24, 2014, methane was found in polar clouds on Titan.
Climate
Titan's surface temperature is about 94 K (−179.2 °C). At this temperature, water ice has an extremely low vapor pressure, so the little water vapor present appears limited to the stratosphere. Titan receives about 1% as much sunlight as Earth. Before sunlight reaches the surface, about 90% has been absorbed by the thick atmosphere, leaving only 0.1% of the amount of light Earth receives.
Atmospheric methane creates a greenhouse effect on Titan's surface, without which Titan would be far colder. Conversely, haze in Titan's atmosphere contributes to an anti-greenhouse effect by reflecting sunlight back into space, cancelling a portion of the greenhouse effect and making its surface significantly colder than its upper atmosphere.

Titan's clouds, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze. The findings of the Huygens probe indicate that Titan's atmosphere periodically rains liquid methane and other organic compounds onto its surface.
Clouds typically cover 1% of Titan's disk, though outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the southern summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only after the southern summer solstice but also during mid-spring. Increased methane humidity at the south pole possibly contributes to the rapid increases in cloud size. It was summer in Titan's southern hemisphere until 2010, when Saturn's orbit, which governs Titan's motion, moved Titan's northern hemisphere into the sunlight. When the seasons switch, it is expected that ethane will begin to condense over the south pole.

Lakes
False-color Cassini radar mosaic of Titan's north polar region. Blue coloring indicates low radar reflectivity, caused by hydrocarbon seas, lakes and tributary networks filled with liquid ethane, methane and dissolved N2.About half of the large body at lower left, Kraken Mare, is shown. Ligeia Mare is at lower right.
   The possibility of hydrocarbon seas on Titan was first suggested based on Voyager 1 and 2 data that showed Titan to have a thick atmosphere of approximately the correct temperature and composition to support them, but direct evidence was not obtained until 1995 when data from Hubble and other observations suggested the existence of liquid methane on Titan, either in disconnected pockets or on the scale of satellite-wide oceans, similar to water on Earth.
    The Cassini mission confirmed the former hypothesis. When the probe arrived in the Saturnian system in 2004, it was hoped that hydrocarbon lakes or oceans would be detected from the sunlight reflected off their surface, but no specular reflections were initially observed. Near Titan's south pole, an enigmatic dark feature named Ontario Lacus was identified (and later confirmed to be a lake).A possible shoreline was also identified near the pole via radar imagery. Following a flyby on July 22, 2006, in which the Cassinispacecraft's radar imaged the northern latitudes (that were then in winter), several large, smooth (and thus dark to radar) patches were seen dotting the surface near the pole. Based on the observations, scientists announced "definitive evidence of lakes filled with methane on Saturn's moon Titan" in January 2007. The Cassini–Huygens team concluded that the imaged features are almost certainly the long-sought hydrocarbon lakes, the first stable bodies of surface liquid found outside of Earth. Some appear to have channels associated with liquid and lie in topographical depressions. The liquid erosion features appear to be a very recent occurrence: channels in some regions have created surprisingly little erosion, suggesting erosion on Titan is extremely slow, or some other recent phenomena may have wiped out older riverbeds and landforms. Overall, the Cassini radar observations have shown that lakes cover only a few percent of the surface, making Titan much drier than Earth. Most of the lakes are concentrated near the poles (where the relative lack of sunlight prevents evaporation), but several long-standing hydrocarbon lakes in the equatorial desert regions have also been discovered, including one near the Huygens landing site in the Shangri-La region, which is about half the size of Utah's Great Salt Lake. The equatorial lakes are probably "oases", i.e. the likely supplier is underground aquifers.
    In June 2008, the Visual and Infrared Mapping Spectrometer on Cassini confirmed the presence of liquid ethane beyond doubt in Ontario Lacus. On December 21, 2008, Cassini passed directly over Ontario Lacus and observed specular reflection in radar. The strength of the reflection saturated the probe's receiver, indicating that the lake level did not vary by more than 3 mm (implying either that surface winds were minimal, or the lake's hydrocarbon fluid is viscous).
Specular reflections are indicative of a smooth, mirror-like surface, so the observation corroborated the inference of the presence of a large liquid body drawn from radar imaging. The observation was made soon after the north polar region emerged from 15 years of winter darkness.
On July 8, 2009, Cassini's VIMS observed a specular reflection indicative of a smooth, mirror-like surface, off what today is called Jingpo Lacus, a lake in the north polar region shortly after the area emerged from 15 years of winter darkness.
Early radar measurements made in July 2009 and January 2010 indicated that Ontario Lacus was extremely shallow, with an average depth of 0.4–3 m, and a maximum depth of 3 to 7 m (9.8 to 23.0 ft).In contrast, the northern hemisphere's Ligeia Mare was initially mapped to depths exceeding 8 m, the maximum discernable by the radar instrument and the analysis techniques of the time. Later science analysis, released in 2014, more fully mapped the depths of Titan's three methane seas and showed depths of more than 200 meters (660 ft). Ligeia Mare averages from 20 to 40 m (66 to 131 ft) in depth, while other parts of Ligeia did not register any radar reflection at all, indicating a depth of more than 200 m (660 ft). While only the second largest of Titan's methane seas, Ligeia "contains enough liquid methane to fill three Lake Michigans."
During a flyby on 26 September 2012, Cassini's radar detected in Titan's northern polar region what is likely a river with a length of more than 400 kilometers. It has been compared with the much larger Nile river on Earth. This feature is connected to Ligeia Mare. Later, a paper ("Liquid-filled Canyons on Titan") published on Geophysical Research Letters on 9 August 2016 reported about the May 2013 Cassini RADAR altimeter observation of Vid Flumina channels, defined as a drainage network connected to Titan's second largest hydrocarbon sea, Ligeia Mare. Analysis of the received altimeter echoes showed that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system. This is likely the first direct evidence of the presence of liquid channels on Titan and the first observation of hundred-meter deep canyons on Titan. Vid Flumina canyons are thus drowned by the sea but there are few isolated observations to attest to the presence of surface liquids standing at higher elevations.
During six flybys of Titan from 2006 to 2011, Cassini gathered radiometric tracking and optical navigation data from which investigators could roughly infer Titan's changing shape. The density of Titan is consistent with a body that is about 60% rock and 40% water. The team's analyses suggest that Titan's surface can rise and fall by up to 10 metres during each orbit. That degree of warping suggests that Titan's interior is relatively deformable, and that the most likely model of Titan is one in which an icy shell dozens of kilometres thick floats atop a global ocean. The team's findings, together with the results of previous studies, hint that Titan's ocean may lie no more than 100 kilometers (62 mi) below its surface. On July 2, 2014, NASA reported the ocean inside Titan may be as salty as the Dead Sea. On September 3, 2014, NASA reported studies suggesting methanerainfall on Titan may interact with a layer of icy materials underground, called an "alkanofer," to produce ethane and propane that may eventually feed into rivers and lakes.
In 2016, Cassini found the first evidence of fluid-filled channels on Titan, in a series of deep, steep-sided canyons flowing into Ligeia Mare. This network of canyons, dubbed Vid Flumina, range in depth from 240 to 570 m and have sides as steep as 40°. They are believed to have formed either by crustal uplifting, like Earth's Grand Canyon, or a lowering of sea level, or perhaps a combination of the two. The depth of erosion suggests that liquid flows in this part of Titan are long-term features that persist for thousands of years.

Observation and exploration
Titan is never visible to the naked eye, but can be observed through small telescopes or strong binoculars. Amateur observation is difficult because of the proximity of Titan to Saturn's brilliant globe and ring system; an occulting bar, covering part of the eyepiece and used to block the bright planet, greatly improves viewing. Titan has a maximum apparent magnitude of +8.2, and mean opposition magnitude 8.4. This compares to +4.6 for the similarly sized Ganymede, in the Jovian system.
Observations of Titan prior to the space age were limited. In 1907 Spanish astronomer Josep Comas i Solà observed limb darkening of Titan, the first evidence that the body has an atmosphere. In 1944 Gerard P. Kuiper used a spectroscopic technique to detect an atmosphere of methane.
The first probe to visit the Saturnian system was Pioneer 11 in 1979, which revealed that Titan was probably too cold to support life. It took images of Titan, including Titan and Saturn together in mid to late 1979. The quality was soon surpassed by the two Voyagers.
Titan was examined by both Voyager 1 and 2 in 1980 and 1981, respectively. Voyager 1's trajectory was designed to provide an optimized Titan flyby, during which the spacecraft was able to determine the density, composition, and temperature of the atmosphere, and obtain a precise measurement of Titan's mass.Atmospheric haze prevented direct imaging of the surface, though in 2004 intensive digital processing of images taken through Voyager 1's orange filter did reveal hints of the light and dark features now known as Xanadu and Shangri-la, which had been observed in the infrared by the Hubble Space Telescope. Voyager 2, which would have been diverted to perform the Titan flyby if Voyager 1 had been unable to, did not pass near Titan and continued on to Uranus and Neptune.


Europa: Moon Of Jupiter, Internal Structure, Discovery, Atmosphere, Exploration


Europa(Moon of Jupiter)

(Europa: Moon Of Jupiter, Internal Structure, Discovery, Atmosphere, Exploration)

Image result for europa moonEuropa /jʊˈroʊpə/ (  listen) (Jupiter II), is the smallest of the four Galilean moons orbiting Jupiter, and the sixth-closest to the planet. It is also the sixth-largest moon in the Solar System. Europa was discovered in 1610 by Galileo Galilei and was named after Europa, the legendary mother of King Minos of Crete and lover of Zeus (the Greek equivalent of the Roman god Jupiter).
Slightly smaller than Earth's Moon, Europa is primarily made of silicate rock and has a water-ice crust and probably an iron–nickelcore. It has a tenuous atmosphere composed primarily of oxygen. Its surface is striated by cracks and streaks, whereas craters are relatively rare. In addition to Earth-bound telescope observations, Europa has been examined by a succession of space probe flybys, the first occurring in the early 1970s.
Europa has the smoothest surface of any known solid object in the Solar System. The apparent youth and smoothness of the surface have led to the hypothesis that a water ocean exists beneath it, which could conceivably harbor extraterrestrial life. The predominant model suggests that heat from tidal flexing causes the ocean to remain liquid and drives ice movement similar to plate tectonics, absorbing chemicals from the surface into the ocean below. Sea salt from a subsurface ocean may be coating some geological features on Europa, suggesting that the ocean is interacting with the seafloor. This may be important in determining if Europa could be habitable. In addition, the Hubble Space Telescope detected water vapor plumes similar to those observed on Saturn's moon Enceladus, which are thought to be caused by erupting cryogeysers.
The Galileo mission, launched in 1989, provides the bulk of current data on Europa. No spacecraft has yet landed on Europa, although there have been several proposed exploration missions. The European Space Agency's Jupiter Icy Moon Explorer (JUICE) is a mission to Ganymede that is due to launch in 2022, and will include two flybys of Europa. NASA's planned Europa Clipper will be launched in the mid-2020s.

Discovery and naming
Europa, along with Jupiter's three other large moons, Io, Ganymede, and Callisto, was discovered by Galileo Galilei on 8 January 1610, and possibly independently by Simon Marius. The first reported observation of Io and Europa was made by Galileo Galileion 7 January 1610 using a 20×-magnification refracting telescope at the University of Padua. However, in that observation, Galileo could not separate Io and Europa due to the low magnification of his telescope, so that the two were recorded as a single point of light. The following day, 8 January 1610 (used as the discovery date for Europa by the IAU), Io and Europa were seen for the first time as separate bodies during Galileo's observations of the Jupiter system.
Europa is named after Europa, daughter of the king of Tyre, a Phoenician noblewoman in Greek mythology. Like all the Galilean satellites, Europa is named after a lover of Zeus, the Greek counterpart of Jupiter. Europa was courted by Zeus and became the queen of Crete. The naming scheme was suggested by Simon Marius, who discovered the four satellites independently.Marius attributed the proposal to Johannes Kepler.
The names fell out of favor for a considerable time and were not revived in general use until the mid-20th century. In much of the earlier astronomical literature, Europa is simply referred to by its Roman numeral designation as Jupiter II (a system also introduced by Galileo) or as the "second satellite of Jupiter". In 1892, the discovery of Amalthea, whose orbit lay closer to Jupiter than those of the Galilean moons, pushed Europa to the third position. The Voyager probes discovered three more inner satellites in 1979, so Europa is now considered Jupiter's sixth satellite, though it is still sometimes referred to as Jupiter II.

Internal structure
It is estimated that Europa has an outer layer of water around 100 km (62 mi) thick; a part frozen as its crust, and a part as a liquid ocean underneath the ice. Recent magnetic-field data from the Galileo orbiter showed that Europa has an induced magnetic field through interaction with Jupiter's, which suggests the presence of a subsurface conductive layer. This layer is likely a salty liquid-water ocean. Portions of the crust are estimated to have undergone a rotation of nearly 80°, nearly flipping over (see true polar wander), which would be unlikely if the ice were solidly attached to the mantle. Europa probably contains a metallic iron core.

Surface features 
Europa is the smoothest known object in the Solar System, lacking large-scale features such as mountains and craters. However; according to one theory, Europa's equator may be covered in icy spikes called penitentes, which may be up to ten meters high, due to direct overhead sunlight on the equator, causing the ice to sublime forming vertical cracks. The prominent markings crisscrossing Europa appear to mainly be albedo features that emphasize low topography. There are few craters on Europa, because its surface is tectonically too active and therefore young. Europa's icy crust has an albedo (light reflectivity) of 0.64, one of the highest of all moons. This indicates a young and active surface, based on estimates of the frequency of cometary bombardment that Europa likely experiences, the surface is about 20 to 180 million years old. There is currently no full scientific consensus among the sometimes contradictory explanations for the surface features of Europa.
The radiation level at the surface of Europa is equivalent to a dose of about 5400 mSv (540 rem) per day, an amount of radiation that would cause severe illness or death in human beings exposed for a single day.

Atmosphere
Observations with the Goddard High Resolution Spectrograph of the Hubble Space Telescope, first described in 1995, revealed that Europa has a thin atmosphere composed mostly of molecular oxygen (O2). The surface pressure of Europa's atmosphere is 0.1 μPa, or 10−12times that of the Earth. In 1997, the Galileo spacecraft confirmed the presence of a tenuous ionosphere (an upper-atmospheric layer of charged particles) around Europa created by solar radiation and energetic particles from Jupiter's magnetosphere, providing evidence of an atmosphere.

Magnetic field around Europa. The red line shows a trajectory of the Galileospacecraft during a typical flyby (E4 or E14).
Unlike the oxygen in Earth's atmosphere, Europa's is not of biological origin. The surface-bounded atmosphere forms through radiolysis, the dissociation of molecules through radiation. Solar ultraviolet radiation and charged particles (ions and electrons) from the Jovian magnetospheric environment collide with Europa's icy surface, splitting water into oxygen and hydrogen constituents. These chemical components are then adsorbedand "sputtered" into the atmosphere. The same radiation also creates collisional ejections of these products from the surface, and the balance of these two processes forms an atmosphere. Molecular oxygen is the densest component of the atmosphere because it has a long lifetime; after returning to the surface, it does not stick (freeze) like a water or hydrogen peroxide molecule but rather desorbs from the surface and starts another ballistic arc. Molecular hydrogen never reaches the surface, as it is light enough to escape Europa's surface gravity.
Observations of the surface have revealed that some of the molecular oxygen produced by radiolysis is not ejected from the surface. Because the surface may interact with the subsurface ocean (considering the geological discussion above), this molecular oxygen may make its way to the ocean, where it could aid in biological processes. One estimate suggests that, given the turnover rate inferred from the apparent ~0.5 Gyr maximum age of Europa's surface ice, subduction of radiolytically generated oxidizing species might well lead to oceanic free oxygen concentrations that are comparable to those in terrestrial deep oceans.
The molecular hydrogen that escapes Europa's gravity, along with atomic and molecular oxygen, forms a gas torus in the vicinity of Europa's orbit around Jupiter. This "neutral cloud" has been detected by both the Cassini and Galileo spacecraft, and has a greater content (number of atoms and molecules) than the neutral cloud surrounding Jupiter's inner moon Io. Models predict that almost every atom or molecule in Europa's torus is eventually ionized, thus providing a source to Jupiter's magnetospheric plasma.

Exploration 
Exploration of Europa began with the Jupiter flybys of Pioneer 10 and 11 in 1973 and 1974 respectively. The first closeup photos were of low resolution compared to later missions. The two Voyager probes traveled through the Jovian system in 1979, providing more-detailed images of Europa's icy surface. The images caused many scientists to speculate about the possibility of a liquid ocean underneath. Starting in 1995, the Galileo spaceprobe orbited Jupiter for eight years, until 2003, and provided the most detailed examination of the Galilean moons to date. It included the "Galileo Europa Mission" and "Galileo Millennium Mission", with numerous close flybys of Europa. In 2007, New Horizonsimaged Europa, as it flew by the Jovian system while on its way to Pluto.

Future missions
Conjectures regarding extraterrestrial life have ensured a high-profile for Europa and have led to steady lobbying for future missions.The aims of these missions have ranged from examining Europa's chemical composition to searching for extraterrestrial life in its hypothesized subsurface oceans. Robotic missions to Europa need to endure the high-radiation environment around itself and Jupiter. Europa receives about 5.40 Sv of radiation per day.
In 2011, a Europa mission was recommended by the U.S. Planetary Science Decadal Survey. In response, NASA commissioned Europa lander concept studies in 2011, along with concepts for a Europa flyby (Europa Clipper), and a Europa orbiter. The orbiter element option concentrates on the "ocean" science, while the multiple-flyby element (Clipper) concentrates on the chemistry and energy science. On 13 January 2014, the House Appropriations Committee announced a new bipartisan bill that includes $80 million funding to continue the Europa mission concept studies.
        Europa Multiple-Flyby Mission — In July 2013 an updated concept for a flyby Europa mission called Europa Clipper was presented by the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL). In May 2015, NASA announced that it had accepted development of the Europa Clipper mission, and revealed the instruments it will use. The aim of Europa Clipper is to explore Europa in order to investigate its habitability, and to aid selecting sites for a future lander. The Europa Clipper would not orbit Europa, but instead orbit Jupiter and conduct 45 low-altitude flybys of Europa during its envisioned mission. The probe would carry an ice-penetrating radar, short-wave infrared spectrometer, topographical imager, and an ion- and neutral-mass spectrometer.
          In 2012, Jupiter Icy Moon Explorer (JUICE) was selected by the European Space Agency (ESA) as a planned mission. That mission includes 2 flybys of Europa, but is more focused on Ganymede.
   
Habitability potential
    A black smoker in the Atlantic Ocean. Driven by geothermal energy, this and other types of hydrothermal vents create chemical disequilibria that can provide energy sources for life.
             Europa has emerged as one of the most likely locations in the Solar System for potential habitability. Life could exist in its under-ice ocean, perhaps in an environment similar to Earth's deep-ocean hydrothermal vents. Even if Europa lacks volcanic hydrothermal activity, a 2016 NASA study found that Earth-like levels of hydrogen and oxygen could be produced through processes related to serpentinization and ice-derived oxidants, which do not directly involve volcanism. In 2015, scientists announced that salt from a subsurface ocean may likely be coating some geological features on Europa, suggesting that the ocean is interacting with the seafloor. This may be important in determining if Europa could be habitable. So far, there is no evidence that life exists on Europa, but the likely presence of liquid water in contact with Europa's rocky mantlehas spurred calls to send a probe there.
             The energy provided by tidal flexing drives active geological processes within Europa's interior, just as they do to a far more obvious degree on its sister moon Io. Although Europa, like the Earth, may possess an internal energy source from radioactive decay, the energy generated by tidal flexing would be several orders of magnitude greater than any radiological source. The energy from tidal flexing could never support an ecosystem in Europa's ocean as large and diverse as the photosynthesis-based ecosystem on Earth's surface. Life on Europa could exist clustered around hydrothermal vents on the ocean floor, or below the ocean floor, where endoliths are known to inhabit on Earth. Alternatively, it could exist clinging to the lower surface of Europa's ice layer, much like algae and bacteria in Earth's polar regions, or float freely in Europa's ocean. If Europa's ocean is too cold, biological processes similar to those known on Earth could not take place. If it is too salty, only extreme halophiles could survive in that environment.
           Evidence suggests the existence of lakes of liquid water entirely encased in Europa's icy outer shell and distinct from a liquid ocean thought to exist farther down beneath the ice shell. If confirmed, the lakes could be yet another potential habitat for life.
           Evidence suggests that hydrogen peroxide is abundant across much of the surface of Europa. Because hydrogen peroxide decays into oxygen and water when combined with liquid water, the authors argue that it could be an important energy supply for simple life forms.
         Clay-like minerals (specifically, phyllosilicates), often associated with organic matter on Earth, have been detected on the icy crust of Europa. The presence of the minerals may have been the result of a collision with an asteroid or comet.
          Life on Earth could have been blasted into space by asteroid collisions and arrived on the moons of Jupiter in a process called lithopanspermia.


Ganymede: Moon Of Jupiter, Internal Structure, Atmosphere, Exploration

Ganymede(Moon Of Jupiter)

(Ganymede: Moon Of Jupiter, Internal Structure, Atmosphere, Exploration)



Ganymede /ˈɡænᵻmiːd/ (Jupiter III) is the largest and most massive moon of Jupiter and in the Solar System. The ninth largest object in the Solar System, it is the largest without a substantial atmosphere. It has a diameter of 5,268 km (3,273 mi) and is 8% larger than the planet Mercury, although only 45% as massive. Possessing a metallic core, it has the lowest moment of inertia factor of any solid body in the Solar System and is the only moon known to have a magnetic field. It is the third of the Galilean moons, the first group of objects discovered orbiting another planet, and the seventh satellite outward from Jupiter, Ganymede orbits Jupiter in roughly seven days and is in a 1:2:4 orbital resonance with the moons Europa and Io, respectively.
Ganymede is composed of approximately equal amounts of silicate rock and water ice. It is a fully differentiated body with an iron-rich, liquid core, and an internal ocean that may contain more water than all of Earth's oceans combined. Its surface is composed of two main types of terrain. Dark regions, saturated with impact craters and dated to four billion years ago, cover about a third of the satellite. Lighter regions, crosscut by extensive grooves and ridges and only slightly less ancient, cover the remainder. The cause of the light terrain's disrupted geology is not fully known, but was likely the result of tectonic activity due to tidal heating.
Ganymede's magnetic field is probably created by convection within its liquid iron core. The meager magnetic field is buried within Jupiter's much larger magnetic field and would show only as a local perturbation of the field lines. The satellite has a thin oxygenatmosphere that includes O, O2, and possibly O3 (ozone). Atomic hydrogen is a minor atmospheric constituent. Whether the satellite has an ionosphere associated with its atmosphere is unresolved.
Ganymede's discovery is credited to Galileo Galilei, who was the first to observe it on January 7, 1610. The satellite's name was soon suggested by astronomer Simon Marius, for the mythological Ganymede, cupbearer of the Greek gods and Zeus's lover. Beginning with Pioneer 10, several spacecraft have explored Ganymede. The Voyager probes refined measurements of its size, while Galileodiscovered its underground ocean and magnetic field. The next planned mission to the Jovian system is the European Space Agency's Jupiter Icy Moon Explorer (JUICE), due to launch in 2022. After flybys of all three icy Galilean moons, the probe is planned to enter orbit around Ganymede.

History
Chinese astronomical records report that in 365 BC, Gan De detected what appears to have been a moon of Jupiter, probably Ganymede, with the naked eye. However, Gan De reported the color of the companion as reddish, which is puzzling since the moons are too faint for their color to be perceived with the naked eye. Shi Shen and Gan De together made fairly accurate observations of the five major planets.
On January 7, 1610, Galileo Galilei observed what he thought were three stars near Jupiter, including what turned out to be Ganymede, Callisto, and one body that turned out to be the combined light from Io and Europa; the next night he noticed that they had moved. On January 13, he saw all four at once for the first time, but had seen each of the moons before this date at least once. By January 15, Galileo came to the conclusion that the stars were actually bodies orbiting Jupiter. He claimed the right to name the moons; he considered "Cosmian Stars" and settled on "Medicean Stars".

The French astronomer Nicolas-Claude Fabri de Peiresc suggested individual names from the Medici family for the moons, but his proposal was not taken up. Simon Marius, who had originally claimed to have found the Galilean satellites, tried to name the moons the "Saturn of Jupiter", the "Jupiter of Jupiter" (this was Ganymede), the "Venus of Jupiter", and the "Mercury of Jupiter", another nomenclature that never caught on. From a suggestion by Johannes Kepler, Marius once again tried to name the moons:
“ Then there was Ganymede, the handsome son of King Tros, whom Jupiter, having taken the form of an eagle, transported to heaven on his back, as poets fabulously tell  the Third, on account of its majesty of light, Ganymede ”
This name and those of the other Galilean satellites fell into disfavor for a considerable time, and were not in common use until the mid-20th century. In much of the earlier astronomical literature, Ganymede is referred to instead by its Roman numeral designation, Jupiter III (a system introduced by Galileo), in other words "the third satellite of Jupiter". Following the discovery of moons of Saturn, a naming system based on that of Kepler and Marius was used for Jupiter's moons. Ganymede is the only Galilean moon of Jupiter named after a male figure—like Io, Europa, and Callisto, he was a lover of Zeus.

Internal structure
Ganymede appears to be fully differentiated, with an internal structure consisting of an iron-sulfide–iron core, a silicate mantle and outer layers of water ice and liquid water. The precise thicknesses of the different layers in the interior of Ganymede depend on the assumed composition of silicates (fraction of olivine and pyroxene) and amount of sulfur in the core. Ganymede has the lowest moment of inertia factor, 0.31, among the solid Solar System bodies. This is a consequence of its substantial water content and fully differentiated interior.

Subsurface oceans 
In the 1970s, NASA scientists first suspected that Ganymede has a thick ocean between two layers of ice, one on the surface and one beneath a liquid ocean and atop the rocky mantle. In the 1990s, NASA's Galileo mission flew by Ganymede, confirming the moon's sub-surface ocean. An analysis published in 2014, taking into account the realistic thermodynamics for water and effects of salt, suggests that Ganymede might have a stack of several ocean layers separated by different phases of ice, with the lowest liquid layer adjacent to the rocky mantle. Water–rock contact may be an important factor in the origin of life. The analysis also notes that the extreme depths involved (~800 km to the rocky "seafloor") mean that temperatures at the bottom of a convective (adiabatic) ocean can be up to 40 K higher than those at the ice–water interface. In March 2015, scientists reported that measurements with the Hubble Space Telescope of how the aurorae moved over Ganymede's surface suggest it has a subsurface ocean. A large salt-water ocean affects Ganymede's magnetic field, and consequently, its aurora.

Core
The existence of a liquid, iron–nickel-rich core provides a natural explanation for the intrinsic magnetic field of Ganymede detected by Galileo spacecraft. The convection in the liquid iron, which has high electrical conductivity, is the most reasonable model of magnetic field generation. The density of the core is 5.5–6 g/cm3 and the silicate mantle is 3.4–3.6 g/cm3. The radius of this core may be up to 500 km. The temperature in the core of Ganymede is probably 1500–1700 K and pressure up to 10 GPa (99,000 atm) (GPa).

Exploration

Completed missions
Several probes flying by or orbiting Jupiter have explored Ganymede more closely, including four flybys in the 1970s, and multiple passes in the 1990s to 2000s.
Pioneer 10 approached in 1973 and Pioneer 11 in 1974, and they returned information about the satellite. This included more specific determination on physical characteristics and resolving features to 400 km (250 mi) on its surface. Pioneer 10's closest approach was 446,250 km.
Voyager 1 and Voyager 2 were next, passing by Ganymede in 1979. They refined its size, revealing it was larger than Saturn's moon Titan, which was previously thought to have been bigger. The grooved terrain was also seen.
In 1995, the Galileo spacecraft entered orbit around Jupiter and between 1996 and 2000 made six close flybys to explore Ganymede.These flybys are G1, G2, G7, G8, G28 and G29. During the closest flyby—G2—Galileo passed just 264 km from the surface of Ganymede. During a G1 flyby in 1996, the Ganymedian magnetic field was discovered, while the discovery of the ocean was announced in 2001. Galileo transmitted a large number of spectral images and discovered several non-ice compounds on the surface of Ganymede. The most recent close observations of Ganymede were made by New Horizons, which recorded topographic and compositional mapping data of Europa and Ganymede during its flyby of Jupiter in 2007 en route to Pluto.

Upcoming mission concepts
The Europa Jupiter System Mission (EJSM) had a proposed launch date in 2020, and was a joint NASA and ESA proposal for exploration of many of Jupiter's moons including Ganymede. In February 2009 it was announced that ESA and NASA had given this mission priority ahead of the Titan Saturn System Mission. EJSM consisted of the NASA-led Jupiter Europa Orbiter, the ESA-led Jupiter Ganymede Orbiter, and possibly a JAXA-led Jupiter Magnetospheric Orbiter. ESA's contribution faced funding competition from other ESA projects, but on 2 May 2012 the European part of the mission, renamed Jupiter Icy Moon Explorer (JUICE), obtained a L1 launch slot in 2022 with a Ariane 5 in the ESA's Cosmic Vision science programme. The spacecraft will orbit Ganymede and conduct multiple flyby investigations of Callisto and Europa.
The Russian Space Research Institute is currently evaluating the Ganymede Lander (GL) mission, with emphasis on astrobiology. The Ganymede Lander would be a partner mission for JUpiter ICy moon Explorer (JUICE). If selected, it would be launched in 2024, though this schedule might be revised and aligned with JUICE.
A Ganymede orbiter based on the Juno probe was proposed in 2010 for the Planetary Science Decadal Survey. Possible instruments include Medium Resolution Camera, Flux Gate Magnetometer, Visible/NIR Imaging Spectrometer, Laser Altimeter, Low and High Energy Plasma Packages, Ion and Neutral Mass Spectrometer, UV Imaging Spectrometer, Radio and Plasma Wave sensor, Narrow Angle Camera, and a Sub-Surface Radar.
Another canceled proposal to orbit Ganymede was the Jupiter Icy Moons Orbiter. It was designed to use nuclear fission for power, ion enginepropulsion, and would have studied Ganymede in greater detail than previously. However, the mission was canceled in 2005 because of budget cuts. Another old proposal was called The Grandeur of Ganymede.