The Earth
(Our Home,Formation,Internal Structure & Atmosphere)
Earth has been called the "Goldilocks planet." In the story of
"Goldilocks and the Three Bears," a little girl named Goldilocks liked
everything just right. Her porridge couldn't be too hot or too cold. And
her bed couldn't be too hard or too soft. On Earth, everything is just
right for life to exist. It's warm, but not too warm. And it has water,
but not too much water.
Earth is the only planet known to have large amounts of liquid water.
Liquid water is essential for life. Earth is the only planet where life
is known to exist.
Formation
The oldest material found in the Solar system is dated to 4.5672±0.0006 billion years ago. By 4.54±0.04 the primordial Earth had formed. The formation and evolution of Solar System bodies occurred along with the Sun. In theory, a solar nebula partitions a volume out of a molecular cloud by gravitational collapse, which begins to spin and flatten into a circumstellar disk, and then the planets grow out of that disk along with the Sun. A nebula contains gas, ice grains, and dust (including primordial nuclides). According to nebular theory, planetesimals formed by accretion, with the primordial Earth taking 10–20 million years (Ma) to form.
A subject of on-going research is the formation of the Moon, some 4.53 billion years ago. A working hypothesis is that it was formed by accretion from material loosed from Earth after a Mars-sized object, named Theia, impacted Earth. In this scenario, the mass of Theia was approximately 10% of that of Earth, it impacted Earth with a glancing blow, and some of its mass merged with Earth. Between approximately 4.1 and 3.8 Gya, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment of the Moon, and by inference, to that of Earth.
Shape
The shape of Earth is approximately oblate spheroidal. Due to rotation, the Earth is flattened along the geographic axis and bulging around the equator. The diameter of the Earth at the equator is 43 kilometres (27 mi) larger than the pole-to-pole diameter. Thus the point on the surface farthest from Earth's center of mass is the summit of the equatorial Chimborazo volcano in Ecuador. The average diameter of the reference spheroid is 12,742 kilometres (7,918 mi). Local topography
deviates from this idealized spheroid, although on a global scale these
deviations are small compared to Earth's radius: The maximum deviation
of only 0.17% is at the Mariana Trench (10,911 metres (35,797 ft) below local sea level), whereas Mount Everest (8,848 metres (29,029 ft) above local sea level) represents a deviation of 0.14%.
In geodesy,
the exact shape that Earth's oceans would adopt in the absence of land
and perturbations such as tides and winds is called the geoid. More precisely, the geoid is the surface of gravitational equipotential at mean sea level.
Atmosphere
The atmospheric pressure on Earth's surface averages 101.325 kPa, with a scale height of about 8.5 km. It has a composition of 78% nitrogen and 21% oxygen, with trace amounts of water vapor, carbon dioxide, and other gaseous molecules. The height of the troposphere
varies with latitude, ranging between 8 km at the poles to 17 km at the
equator, with some variation resulting from weather and seasonal
factors.
Earth's biosphere has significantly altered its atmosphere. Oxygenic photosynthesis evolved 2.7 Gya, forming the primarily nitrogen–oxygen atmosphere of today. This change enabled the proliferation of aerobic organisms and, indirectly, the formation of the ozone layer due to the subsequent conversion of atmospheric O2 into O3. The ozone layer blocks ultraviolet solar radiation, permitting life on land. Other atmospheric functions important to life include transporting water vapor, providing useful gases, causing small meteors to burn up before they strike the surface, and moderating temperature. This last phenomenon is known as the greenhouse effect: trace molecules within the atmosphere serve to capture thermal energy emitted from the ground, thereby raising the average temperature. Water vapor, carbon dioxide, methane, nitrous oxide, and ozone are the primary greenhouse gases
in the atmosphere. Without this heat-retention effect, the average
surface temperature would be −18 °C, in contrast to the current +15 °C, and life on Earth probably would not exist in its current form. In May 2017, glints of light, seen as twinkling from an orbiting satellite a million miles away, were found to be reflected light from ice crystals in the atmosphere.
The troposphere is the layer closest to Earth's surface. It is 4 to 12 miles (7 to 20 km) thick and contains half of Earth's atmosphere. Air is warmer near the ground and gets colder higher up. Nearly all of the water vapor and dust in the atmosphere are in this layer and that is why clouds are found here.
The stratosphere is the second layer. It starts above the troposphere and ends about 31 miles (50 km) above ground. Ozone is abundant here and it heats the atmosphere while also absorbing harmful radiation from the sun. The air here is very dry, and it is about a thousand times thinner here than it is at sea level. Because of that, this is where jet aircraft and weather balloons fly.
The mesosphere starts at 31 miles (50 km) and extends to 53 miles (85 km) high. The top of the mesosphere, called the mesopause, is the coldest part of Earth's atmosphere, with temperatures averaging about minus 130 degrees F (minus 90 C). This layer is hard to study. Jets and balloons don't go high enough, and satellites and space shuttles orbit too high. Scientists do know that meteors burn up in this layer.
The thermosphere extends from about 56 miles (90 km) to between 310 and 620 miles (500 and 1,000 km). Temperatures can get up to 2,700 degrees F (1,500 C) at this altitude. The thermosphere is considered part of Earth's atmosphere, but air density is so low that most of this layer is what is normally thought of as outer space. In fact, this is where the space shuttles flew and where the International Space Station orbits Earth. This is also the layer where the auroras occur. Charged particles from space collide with atoms and molecules in the thermosphere, exciting them into higher states of energy. The atoms shed this excess energy by emitting photons of light, which we see as the colorful Aurora Borealis and Aurora Australis.
The exosphere, the highest layer, is extremely thin and is where the atmosphere merges into outer space. It is composed of very widely dispersed particles of hydrogen and helium.
Earth's global climate is an average of regional climates. The global climate has cooled and warmed throughout history. Today, we are seeing unusually rapid warming. The scientific consensus is that greenhouse gases, which are increasing because of human activities, are trapping heat in the atmosphere.
Atmosphere layers
Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere. The atmosphere thins out in each higher layer until the gases dissipate in space. There is no distinct boundary between the atmosphere and space, but an imaginary line about 62 miles (100 kilometers) from the surface, called the Karman line, is usually where scientists say atmosphere meets outer space.The troposphere is the layer closest to Earth's surface. It is 4 to 12 miles (7 to 20 km) thick and contains half of Earth's atmosphere. Air is warmer near the ground and gets colder higher up. Nearly all of the water vapor and dust in the atmosphere are in this layer and that is why clouds are found here.
The stratosphere is the second layer. It starts above the troposphere and ends about 31 miles (50 km) above ground. Ozone is abundant here and it heats the atmosphere while also absorbing harmful radiation from the sun. The air here is very dry, and it is about a thousand times thinner here than it is at sea level. Because of that, this is where jet aircraft and weather balloons fly.
The mesosphere starts at 31 miles (50 km) and extends to 53 miles (85 km) high. The top of the mesosphere, called the mesopause, is the coldest part of Earth's atmosphere, with temperatures averaging about minus 130 degrees F (minus 90 C). This layer is hard to study. Jets and balloons don't go high enough, and satellites and space shuttles orbit too high. Scientists do know that meteors burn up in this layer.
The thermosphere extends from about 56 miles (90 km) to between 310 and 620 miles (500 and 1,000 km). Temperatures can get up to 2,700 degrees F (1,500 C) at this altitude. The thermosphere is considered part of Earth's atmosphere, but air density is so low that most of this layer is what is normally thought of as outer space. In fact, this is where the space shuttles flew and where the International Space Station orbits Earth. This is also the layer where the auroras occur. Charged particles from space collide with atoms and molecules in the thermosphere, exciting them into higher states of energy. The atoms shed this excess energy by emitting photons of light, which we see as the colorful Aurora Borealis and Aurora Australis.
The exosphere, the highest layer, is extremely thin and is where the atmosphere merges into outer space. It is composed of very widely dispersed particles of hydrogen and helium.
Climate and weather
Earth is able to support a wide variety of living beings because of its diverse regional climates, which range from extreme cold at the poles to tropical heat at the Equator. Regional climate is often described as the average weather in a place over more than 30 years. A region's climate is often described, for example, as sunny, windy, dry, or humid. These can also describe the weather in a certain place, but while the weather can change in just a few hours, climate changes over a longer span of time.Earth's global climate is an average of regional climates. The global climate has cooled and warmed throughout history. Today, we are seeing unusually rapid warming. The scientific consensus is that greenhouse gases, which are increasing because of human activities, are trapping heat in the atmosphere.
Internal structure
Earth's interior, like that of the other terrestrial planets, is divided into layers by their chemical or physical (rheological) properties. The outer layer is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity. The thickness of the crust varies from about 6 km (kilometers) under the oceans to 30–50 km for the continents. The crust and the cold, rigid, top of the upper mantle
are collectively known as the lithosphere, and it is of the lithosphere
that the tectonic plates are composed. Beneath the lithosphere is the asthenosphere,
a relatively low-viscosity layer on which the lithosphere rides.
Important changes in crystal structure within the mantle occur at 410
and 660 km below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core. The Earth's inner core might rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year. The radius of the inner core is about one fifth of that of Earth.
0 comments:
Post a Comment