Aug 6, 2017

Ceres : dwarf Planet in asteroid belt, atmosphere, internal structure,discovery,exploration


Ceres
(Ceres : dwarf Planet in asteroid belt, atmosphere, internal structure,discovery,exploration)

Ceres (/ˈsɪəriːz/; minor-planet designation: 1 Ceres) is the largest object in the asteroid belt that lies between the orbits of Mars and Jupiter. Its diameter is approximately 945 kilometers (587 miles), making it the largest of the minor planets within the orbit of Neptune. The 33rd-largest known body in the Solar System, it is the only dwarf planet within the orbit of Neptune. Composed of rock and ice, Ceres is estimated to compose approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, and hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies.
Ceres - RC3 - Haulani Crater (22381131691) (cropped).jpg
Ceres was the first asteroid to be discovered (by Giuseppe Piazzi at Palermo on 1 January 1801). It was originally considered a planet, but was reclassified as an asteroid in the 1850s after many other objects in similar orbits were discovered.

Ceres appears to be differentiated into a rocky core and an icy mantle, and may have a remnant internal ocean of liquid water under the layer of ice. The surface is probably a mixture of water ice and various hydrated minerals such as carbonates and clay. In January 2014, emissions of water vapor were detected from several regions of Ceres. This was unexpected because large bodies in the asteroid belt typically do not emit vapor, a hallmark of comets.

The robotic NASA spacecraft Dawn entered orbit around Ceres on 6 March 2015. Pictures with a resolution previously unattained were taken during imaging sessions starting in January 2015 as Dawn approached Ceres, showing a cratered surface. Two distinct bright spots (or high-albedo features) inside a crater (different from the bright spots observed in earlier Hubble images) were seen in a 19 February 2015 image, leading to speculation about a possible cryovolcanic origin or outgassing. On 3 March 2015, a NASA spokesperson said the spots are consistent with highly reflective materials containing ice or salts, but that cryovolcanism is unlikely. However, on 2 September 2016, NASA scientists released a paper in Science that claimed that a massive ice volcano called Ahuna Mons is the strongest evidence yet for the existence of these mysterious ice volcanoes. On 11 May 2015, NASA released a higher-resolution image showing that, instead of one or two spots, there are actually several. On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be related to a type of salt, particularly a form of brine containing magnesium sulfate hexahydrite (MgSO4•6H2O); the spots were also found to be associated with ammonia-rich clays. In June 2016, near-infrared spectra of these bright areas were found to be consistent with a large amount of sodium carbonate (Na2CO3), implying that recent geologic activity was probably involved in the creation of the bright spots.

In October 2015, NASA released a true color portrait of Ceres made by Dawn. In February 2017, organics were reported to have been detected on Ceres in Ernutet crater (see image).
Discovery
Piazzi's book Della scoperta del nuovo pianeta Cerere Ferdinandea outlining the discovery of Ceres, dedicated the new "planet" to Ferdinand I of the Two Sicilies.
   Johann Elert Bode, in 1772, first suggested that an undiscovered planet could exist between the orbits of Mars and Jupiter. Kepler had already noticed the gap between Mars and Jupiter in 1596. Bode based his idea on the Titius–Bode law which is a now-discredited hypothesis that was first proposed in 1766. Bode observed that there was a regular pattern in the semi-major axes of the orbits of known planets, and that the pattern was marred only by the large gap between Mars and Jupiter. The pattern predicted that the missing planet ought to have an orbit with a semi-major axis near 2.8 astronomical units (AU). William Herschel's discovery of Uranus in 1781 near the predicted distance for the next body beyond Saturn increased faith in the law of Titius and Bode, and in 1800, a group headed by Franz Xaver von Zach, editor of the Monatliche Correspondenz, sent requests to twenty-four experienced astronomers (whom he dubbed the "celestial police"), asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found several large asteroids.
  One of the astronomers selected for the search was Giuseppe Piazzi, a Catholic priest at the Academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th  of the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving star-like object, which he first thought was a comet. Piazzi observed Ceres a total of 24 times, the final time on 11 February 1801, when illness interrupted his observations. He announced his discovery on 24 January 1801 in letters to only two fellow astronomers, his compatriot Barnaba Oriani of Milan and Bode of Berlin. He reported it as a comet but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and Jérôme Lalande in Paris. The information was published in the September 1801 issue of the Monatliche Correspondenz.
  By this time, the apparent position of Ceres had changed (mostly due to Earth's orbital motion), and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Toward the end of the year, Ceres should have been visible again, but after such a long time it was difficult to predict its exact position. To recover Ceres, Carl Friedrich Gauss, then 24 years old, developed an efficient method of orbit determination. In only a few weeks, he predicted the path of Ceres and sent his results to von Zach. On 31 December 1801, von Zach and Heinrich W. M. Olbers found Ceres near the predicted position and thus recovered it.
    The early observers were only able to calculate the size of Ceres to within an order of magnitude. Herschel underestimated its diameter as 260 km in 1802, whereas in 1811 Johann Hieronymus Schröter overestimated it as 2,613 km.

Internal structure

Image result for ceres internal structure
Ceres' oblateness is consistent with a differentiated body, a rocky core overlain with an icy mantle. This 100-kilometer-thick mantle (23%–28% of Ceres by mass; 50% by volume) contains up to 200 million cubic kilometers of water, which would be more than the amount of fresh water on Earth. This result is supported by the observations made by the Keck telescope in 2002 and by evolutionary modeling. Also, some characteristics of its surface and history (such as its distance from the Sun, which weakened solar radiation enough to allow some fairly low-freezing-point components to be incorporated during its formation), point to the presence of volatile materials in the interior of Ceres. It has been suggested that a remnant layer of liquid water may have survived to the present under a layer of ice.

Shape and gravity field measurements by Dawn confirm Ceres is a body in hydrostatic equilibrium with partial differentiation and isostatic compensation, with a mean moment of inertia of 0.37 (which is similar to that of Callisto at ~0.36). The densities of the core and outer layer are estimated to be 2.46–2.90 and 1.68–1.95 g/cm3, with the latter being about 70–190 km thick. Only partial dehydration of the core is expected. The high density of the outer layer (relative to water ice) reflects its enrichment in silicates and salts. Ceres is the smallest object confirmed to be in hydrostatic equilibrium, being 600 km smaller and less than half the mass of Saturn's moon Rhea, the next smallest such object. Modeling has suggested Ceres could have a small metallic core from partial differentiation of its rocky fraction.
Atmosphere
There are indications that Ceres has a tenuous water vapor atmosphere outgassing from water ice on the surface.
    Surface water ice is unstable at distances less than 5 AU from the Sun, so it is expected to sublime if it is exposed directly to solar radiation. Water ice can migrate from the deep layers of Ceres to the surface, but escapes in a very short time. As a result, it is difficult to detect water vaporization. Water escaping from polar regions of Ceres was possibly observed in the early 1990s but this has not been unambiguously demonstrated. It may be possible to detect escaping water from the surroundings of a fresh impact crater or from cracks in the subsurface layers of Ceres. Ultraviolet observations by the IUE spacecraft detected statistically significant amounts of hydroxide ions near Ceres' north pole, which is a product of water vapor dissociation by ultraviolet solar radiation.
     In early 2014, using data from the Herschel Space Observatory, it was discovered that there are several localized (not more than 60 km in diameter) mid-latitude sources of water vapor on Ceres, which each give off approximately 1026 molecules (or 3 kg) of water per second. Two potential source regions, designated Piazzi (123°E, 21°N) and Region A (231°E, 23°N), have been visualized in the near infrared as dark areas (Region A also has a bright center) by the W. M. Keck Observatory. Possible mechanisms for the vapor release are sublimation from approximately 0.6 km2 of exposed surface ice, or cryovolcanic eruptions resulting from radiogenic internal heat or from pressurization of a subsurface ocean due to growth of an overlying layer of ice. Surface sublimation would be expected to be lower when Ceres is farther from the Sun in its orbit, whereas internally powered emissions should not be affected by its orbital position. The limited data available was more consistent with cometary-style sublimation; however, subsequent evidence from Dawn strongly suggests ongoing geologic activity could be at least partially responsible.
     Studies using Dawn's gamma ray and neutron detector (GRaND) reveal that Ceres is accelerating electrons from the solar wind regularly; although there are several possibilities as to what is causing this, the most accepted is that these electrons are being accelerated by collisions between the solar wind and a tenuous water vapor exosphere.
    In 2017, Dawn confirmed that Ceres has a transient atmosphere that appears to be linked to solar activity. Ice on Ceres can sublimate when energetic particles from the Sun hit exposed ice within craters.
Origin and evolution
Ceres is possibly a surviving protoplanet (planetary embryo), which formed 4.57 billion years ago in the asteroid belt. Although the majority of inner Solar System protoplanets (including all lunar- to Mars-sized bodies) either merged with other protoplanets to form terrestrial planets or were ejected from the Solar System by Jupiter, Ceres is thought to have survived relatively intact. An alternative theory proposes that Ceres formed in the Kuiper belt and later migrated to the asteroid belt. The discovery of ammonia salts in Occator crater supports an origin in the outer Solar System. Another possible protoplanet, Vesta, is less than half the size of Ceres; it suffered a major impact after solidifying, losing ~1% of its mass.
     The geological evolution of Ceres was dependent on the heat sources available during and after its formation: friction from planetesimal accretion, and decay of various radionuclides (possibly including short-lived extinct radionuclides such as aluminium-26). These are thought to have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle soon after its formation. This process may have caused resurfacing by water volcanism and tectonics, erasing older geological features. Ceres's relatively warm surface temperature implies that any of the resulting ice on its surface would have gradually sublimated, leaving behind various hydrated minerals like clay minerals and carbonates.
     Today, Ceres has become considerably less geologically active, with a surface sculpted chiefly by impacts; nevertheless, evidence from Dawn reveals that internal processes have continued to sculpt Ceres's surface to a significant extent, in stark contrast to Vesta and of previous expectations that Ceres would have become geologically dead early in its history due to its small size. The presence of significant amounts of water ice in its composition and evidence of recent geological resurfacing, raises the possibility that Ceres has a layer of liquid water in its interior. This hypothetical layer is often called an ocean. If such a layer of liquid water exists, it is hypothesized to be located between the rocky core and ice mantle like that of the theorized ocean on Europa. The existence of an ocean is more likely if solutes (i.e. salts), ammonia, sulfuric acid or other antifreeze compounds are dissolved in the water.

Observation
When Ceres has an opposition near the perihelion, it can reach a visual magnitude of +6.7. This is generally regarded as too dim to be seen with the naked eye, but under exceptional viewing conditions a very sharp-sighted person may be able to see it. The only other asteroids that can reach a similarly bright magnitude are 4 Vesta, and, during rare oppositions near perihelion, 2 Pallas and 7 Iris. At a conjunction Ceres has a magnitude of around +9.3, which corresponds to the faintest objects visible with 10×50 binoculars. It can thus be seen with binoculars whenever it is above the horizon of a fully dark sky.

Some notable observations and milestones for Ceres include:
 1984 November 13: An occultation of a star by Ceres observed in Mexico, Florida and across the Caribbean.
 1995 June 25: Ultraviolet Hubble Space Telescope images with 50-kilometer resolution.
 2002: Infrared images with 30-km resolution taken with the Keck telescope using adaptive optics.
• 2003 and 2004: Visible light images with 30-km resolution (the best prior to the Dawn mission) taken using Hubble.
 2012 December 22: Ceres occulted the star TYC 1865-00446-1 over parts of Japan, Russia, and China. Ceres' brightness was magnitude 6.9 and the star, 12.2.
• 2014: Ceres was found to have an atmosphere with water vapor, confirmed by the Herschel space telescope.
• 2015: The NASA Dawn spacecraft approached and orbited Ceres, sending detailed images and scientific data back to Earth.
Exploration
In 1981, a proposal for an asteroid mission was submitted to the European Space Agency (ESA). Named the Asteroidal Gravity Optical and Radar Analysis (AGORA), this spacecraft was to launch some time in 1990–1994 and perform two flybys of large asteroids. The preferred target for this mission was Vesta. AGORA would reach the asteroid belt either by a gravitational slingshot trajectory past Mars or by means of a small ion engine. However, the proposal was refused by ESA. A joint NASA–ESA asteroid mission was then drawn up for a Multiple Asteroid Orbiter with Solar Electric Propulsion (MAOSEP), with one of the mission profiles including an orbit of Vesta. NASA indicated they were not interested in an asteroid mission. Instead, ESA set up a technological study of a spacecraft with an ion drive. Other missions to the asteroid belt were proposed in the 1980s by France, Germany, Italy, and the United States, but none were approved. Exploration of Ceres by fly-by and impacting penetrator was the second main target of the second plan of the multiaimed Soviet Vesta mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding.
In the early 1990s, NASA initiated the Discovery Program, which was intended to be a series of low-cost scientific missions. In 1996, the program's study team recommended as a high priority a mission to explore the asteroid belt using a spacecraft with an ion engine. Funding for this program remained problematic for several years, but by 2004 the Dawn vehicle had passed its critical design review.
  It was launched on 27 September 2007, as the space mission to make the first visits to both Vesta and Ceres. On 3 May 2011, Dawn acquired its first targeting image 1.2 million kilometers from Vesta. After orbiting Vesta for 13 months, Dawn used its ion engine to depart for Ceres, with gravitational capture occurring on 6 March 2015 at a separation of 61,000 km, four months prior to the New Horizons flyby of Pluto.

Dawn's mission profile calls for it to study Ceres from a series of circular polar orbits at successively lower altitudes. It entered its first observational orbit ("RC3") around Ceres at an altitude of 13,500 km on 23 April 2015, staying for only approximately one orbit (fifteen days). The spacecraft will subsequently reduce its orbital distance to 4,400 km for its second observational orbit ("survey") for three weeks, then down to 1,470 km ("HAMO;" high altitude mapping orbit) for two months and then down to its final orbit at 375 km ("LAMO;" low altitude mapping orbit) for at least three months. The spacecraft instrumentation includes a framing camera, a visual and infrared spectrometer, and a gamma-ray and neutron detector. These instruments will examine Ceres' shape and elemental composition. On 13 January 2015, Dawn took the first images of Ceres at near-Hubble resolution, revealing impact craters and a small high-albedo spot on the surface, near the same location as that observed previously. Additional imaging sessions, at increasingly better resolution took place on 25 January, 4, 12, 19, and 25 February, 1 March, and 10 and 15 April.
   Dawn's arrival in a stable orbit around Ceres was delayed after, close to reaching Ceres, it was hit by a cosmic ray, making it take another, longer route around Ceres in back, instead of a direct spiral towards it.
   The Chinese Space Agency is designing a sample retrieval mission from Ceres that would take place during the 2020s.

0 comments:

Post a Comment